Prof. Eiichi Nakamura*
Article first published online: 17 DEC 2012
DOI: 10.1002/anie.201205693
“The truth is, the Science of Nature has been already too long made only a work of the Brain and the Fancy: It is now high time that it should return to the plainness and soundness of Observations on material and obvious things,” proudly declared Robert Hooke in his highly successful picture book of microscopic and telescopic images, “Micrographia” in 1665. Hooke’s statement has remained true in chemistry, where a considerable work of the brain and the fancy is still necessary. Single-molecule, real-time transmission electron microscope (SMRT-TEM) imaging at an atomic resolution now allows us to learn about molecules simply by watching movies of them. Like any dream come true, the new analytical technique challenged the old common sense of the communities, and offers new research opportunities that are unavailable by conventional methods. With its capacity to visualize the motions and the reactions of individual molecules and molecular clusters, the SMRT-TEM technique will become an indispensable tool in molecular science and the engineering of natural and synthetic substances, as well as in science education.
Article first published online: 17 DEC 2012
DOI: 10.1002/anie.201205693
“The truth is, the Science of Nature has been already too long made only a work of the Brain and the Fancy: It is now high time that it should return to the plainness and soundness of Observations on material and obvious things,” proudly declared Robert Hooke in his highly successful picture book of microscopic and telescopic images, “Micrographia” in 1665. Hooke’s statement has remained true in chemistry, where a considerable work of the brain and the fancy is still necessary. Single-molecule, real-time transmission electron microscope (SMRT-TEM) imaging at an atomic resolution now allows us to learn about molecules simply by watching movies of them. Like any dream come true, the new analytical technique challenged the old common sense of the communities, and offers new research opportunities that are unavailable by conventional methods. With its capacity to visualize the motions and the reactions of individual molecules and molecular clusters, the SMRT-TEM technique will become an indispensable tool in molecular science and the engineering of natural and synthetic substances, as well as in science education.
No comments:
Post a Comment