Tuesday, November 6, 2012

High-Performance Nanopapers Based on Benzenesulfonic Functionalized Graphenes


Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
ACS Nano, Article ASAP
DOI: 10.1021/nn303917p
Publication Date (Web): October 25, 2012
Copyright © 2012 American Chemical Society


High-performance graphene nanopapers are prepared from an aqueous solution of functional graphenes with benzenesulfonic acid groups via covalent bonds. The formed hydrophobic graphene nanopapers showed the highest tensile strength of 360 MPa and Young’s modulus of 102 GPa for samples with 13.7 wt % functional group and annealed at 150 °C. These samples showed a high electrical conductivity of 4.45 × 104 S/m after being annealed at 250 °C. The aforementioned properties of graphene nanopapers are much higher than any previously reported data. The properties of nanopapers depend on the degree of functionality on graphenes and the annealing temperatures, which are further evidenced by X-ray photoelectron spectroscopy, FTIR, and X-ray diffraction patterns. Such unique nanopapers can be easily bounded and sandwiched onto any solid surface to give rise to great potentials in many applications such as gas diffusion barriers, EMI shielding, thermal management, and anticorrosion.

No comments:

Post a Comment